5
Centrality and Prestige

One of the primary uses of graph theory in social network analysis is
the identification of the “most important” actors in a social network.
In this chapter, we present and discuss a variety of measures designed
to highlight the differences between important and non-important ac-
tors. Definitions of importance, or synonymously, prominence, have been
offered by many writers. All such measures attempt to describe and
measure properties of “actor location” in a social network. Actors who
are the most important or the most prominent are usually located in
strategic locations within the network. As far back as Moreno (1934),
researchers have attempted to quantify the notions of sociometric “stars”
and “isolates.”

We will discuss the most noteworthy and substantively interesting
definitions of importance or prominence along with the mathematical
concepts that the various definitions have spawned. Among the defi-
nitions that we will discuss in this chapter are those based on degree,
closeness, betweenness, information, and simply the differential status or
rank of the actors. These definitions yield actor indices which attempt to
quantify the prominence of an individual actor embedded in a network.
The actor indices can also be aggregated across actors to obtain a single,
group-level index which summarizes how variable or differentiated the
set of actors is as a whole with respect to a given measure. We will show
how to calculate both actor and group indices in this chapter.

Throughout this chapter, we will distinguish between relations that
are directional (yielding directed graphs) and those that are not (yielding
undirected graphs). The majority of the centrality concepts discussed in
this chapter are designed for graphs (and thus, symmetric sociomatrices),
and most of these, just for dichotomous relations. The notion of prestige,
however, can only be quantified by using relations for which we can
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distinguish “choices” sent from choices received by the actors, and there-
fore, can only be studied with directed graphs. With directional relations,
measures such as outdegree and indegree are quite likely to be different,
and (as we will see in this chapter) prestigious actors are usually those
with large indegrees, or “choices” received. Both centrality and prestige
indices are examples of measures of the prominence or importance of
the actors in a social network. We will consider definitions of prestige
other than the indegree of an actor, and show that prestigious actors
not only are chosen or nominated by many actors, but the actors who
are doing the choosing must also be prestigious. So, the chapter will be
split into two main parts: the first, presenting centrality measures for
nondirectional relations, and the second, discussing both centrality and
prestige measures for directional relations. ,

The substantive nature of the relation under study clearly determines
which types of measures are appropriate for the network. Directional
relations give two types of actor and group measures, based on both
centrality and prestige, while nondirectional relations give just one type,
based on centrality alone. We describe four well-known varieties of
centrality in this chapter, illustrating and defining them first for nondi-
rectional relations. We will then discuss directional relations, and not
only show how these four centrality measures can be extended to such
relations, but also define three measures of prestige, based on degree,
proximity, and status or rank. This latter measure of status or rank has
been shown to be quite useful in practice.

All these measures are first defined at the level of the individual actor.
The measures can then be aggregated over all actors to obtain a group-
level measure of either centralization or group prestige. Such aggregate
measures are thus defined at the level of the entire set of actors. They
attempt to measure how “centralized” or “prestigious” the set of actors
is as a whole. We will present several methods for taking the individual
actor indices, and combining them to arrive at a single, group-level index.
These methods are as simple as variances, and as complicated as ratios
of the average difference of the actor index from its maximum possible
value to the maximum of this average difference. The group-level indices
are usually between 0 and 1, and thus are not difficult to interpret.

Throughout the chapter, we will apply the actor and group measures to
a variety of data, both real and artificial. Three artificial graphs that very
nicely highlight the differences among the measures we describe are shown
in Figure 5.1. These graphs, all with g = 7, will be labeled the star graph
(Figure 5.1a), the circle (Figure 5.1b), and the line graph (Figure 5.1c; see
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Fig. 5.1. Three illustrative networks for the study of centrality and
prestige

Freeman 1980a). We will refer to these graphs or networks frequently,
since the centrality of the actors in these graphs varies greatly, as does the
centralization of the graphs. Just a quick glance at these figures shows
that the nodes in the graphs are quite different. For example, all nodes
in the circle are interchangeable, and hence should be equally central.
One node in the star completely outranks the others, while the other six
themselves are interchangeable. In the line graph, the nodes’ centrality
clearly decreases from that for ny, to ny and n3, and so on, to ng and ny,
who are peripheral in this graph.

Many graph theoretic centrality concepts are discussed in Hage and
Harary (1983) and in the other general references given in Chapter 4.
Based on our understanding of the major concepts of graph theory,
as presented in Chapter 4, it.should be clear that we can define (maybe
even invent) many graph theoretic centrality notions, such as the “center”
and “centroid” of a graph, with the goal of quantifying importance or
prominence. But the major question still remains unanswered: Are the
nodes in the graph center and/or in the graph centroid and/or with
maximal degree the most “central” nodes in a substantive sense — that
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1s, does the center, or centroid, of a graph contain the most important
actors? In part, this is a question about the validity of the measures
of centrality — do they really capture what we substantively mean be
“importance” or “prominence”? Can we simply focus on the actors
who are “chosen” the most to find the most important actors? Of
course, unless we define what we mean by the terms “important” and
“prominent,” these questions are not answerable.

Thus, we first will define prominence or importance, and discuss how
the terms “central” and “prestigious” quantify two important aspects of
prominence. We will then answer questions about which actors are the
most important, and will find that the best centrality notions are first
based primarily on substantive theory, and then use graph theory to be
quantified.

5.1 Prominence: Centrality and Prestige

We begin by assuming that one has measurements on a single, di-
chotomous relation, although some of the measures discussed here are
generalizable to other types of network data. We will not be concerned
here with a signed or multirelational situation, even though such sit-
uations are very interesting (both methodologically and substantively).
These types of relations have not been studied using the ideas discussed
in this chapter.

We will consider an actor to be prominent if the ties of the actor
make the actor particularly visible to the other actors in the network.
This equating of prominence to visibility was made by Knoke and Burt
(1983). Hubbell (1965) and Friedkin (1991) note that prominence should
be measured by looking not only at direct or adjacent ties, but also at
indirect paths involving intermediaries. This philosophy is maintained
throughout. To determine which of the g actors in a group are prominent,
one needs to examine not only all “choices” made by an actor and all
“choices” received, but indirect ties as well.

If a relation is nondirectional, the ith row of the sociomatrix X,
(Xi1, Xi, ..., Xj), is identical to the ith column (X144, X2, ..., X,i). Thus,
actor i’s prominence within a network is based on the pattern of these
g — 1 possible ties or entries in the sociomatrix, defining the location of
actor i. If the relation is directional, the ith row of the sociomatrix differs
from the ith column, so that actor ’s prominence is based on the 2(g—1)
entries in the sociomatrix involving i. Some of the specific definitions
of prominence will also consider choices made through intermediaries,
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or third parties, but such choices will almost always be of secondary
concern.

This definition of prominence is still rather vague. Are prominent actors
the objects of many “choices” from followers, while non-prominent actors
(or followers) are not? What properties of these “choices” make an actor
more visible than the other actors or the “object of” many ties? And
what shall we do about indirect choices? This definition is also relative
to the nature of the “choices” made by the other actors. Prominence is
difficult to quantify, since many actor indices that are functions of just
the ith row and column of the sociomatrix would qualify as measures of
prominence.

To allow researchers to define better the important actors as those
with more visibility and to understand better the meaning of the concept,
Knoke and Burt distinguish two types of visibility, or to us, two classes
of prominence — centrality and prestige. Both these types are based on
the relational pattern of the row and column entries of the sociomatrix
associated with each actor. This dichotomy is very useful and a very
important contribution to the extensive literature on prominence. Let us
now define both these versions of prominence, after which we will show
how they can be quantified first for nondirectional relations, and then
for directional ones.

5.1.1 Actor Centrality

Prominent actors are those that are extensively involved in relationships
with other actors. This involvement makes them more visible to the
others. We are not particularly concerned with whether this prominence
is due to the receiving (being the recipient) or the transmission (being
the source) of many ties — what is important here is that the actor
is simply involved. This focus on involvement leads us to consider first
nondirectional relations, where there is no distinction between receiving
and sending. Thus, for a nondirectional relation, we define a central
actor as one involved in many ties. However, even though centrality
seems most appropriate for nondirectional relations, we will, later in this
chapter, show how such indices can also be calculated for directional
relations.

This definition of centrality was first developed by Bavelas (1948, 1950).
The idea was applied in the late 1940’s and early 1950’s in laboratory
experiments on communication networks (rather than from observed,
naturally occurring networks) directed by Bavelas and conducted by
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Leavitt (1949, 1951), Smith (1950), and Bavelas and Barrett (1951).
As Freeman (1979) reports, these first experiments led to many more
experiments in the 1950’s and 1960’s (see Burgess 1968, Rogers and
Agarwala-Rogers 1976, and the citations in Freeman 1979, for reviews).
In recent research, Freeman (1977, 1979, 1980a) has advocated the use
of centrality measures to understand group structure, by systematically
defining the centrality notions we discuss below. At the same time, he
introduced a new centrality measure based on betweenness (see below).

As Knoke and Burt (1983) point out, sociological and economic con-
cepts such as access and control over resources, and brokerage of infor-
mation, are well suited to measurement. These concepts naturally yield
a definition of centrality since the difference between the source and the
receiver is less important than just participating in many interactions.
Assuming that one is studying a relevant relation (such as communica-
tion), those actors with the most access or most control or who are the
most active brokers will be the most central in the network.

We will employ a simple notation for actor centrality measures, first
used by Freeman (1977, 1979). We let C denote a particular centrality
measure, which will be a function of a specific n;. There will be a variety
of measures introduced in this chapter, so we will subscript C with an
index for the particular measure under study. If we let 4 be a generic
measure, then one of the actor centralities defined below will be denoted
by C4(n;). We will use a variety of different values for A to distinguish
among the different versions of centrality. As usual, the index i will range
over the integers from 1 to g.

5.1.2 Actor Prestige

Suppose we can make a distinction between ties sent and ties received,
as is true for directional relations. We define a prestigious actor as one
who is the object of extensive ties, thus focusing solely on the actor as
a recipient. Clearly, prestige is a more refined concept than centrality,
and cannot always be measured. The prestige of an actor increases
as the actor becomes the object of more ties but not necessarily when
the actor itself initiates the ties. In other words, one must look at ties
directed fo an actor to study that actor’s prestige. Since indegrees are
only distinguishable from outdegrees for directional relations, we will not
be able to quantify prestige of an actor unless the relation is directional,
a point that we discuss in more detail below.
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Quantification of prestige, and the separation of the concept from
centrality, is somewhat analogous to the distinction frequently made
between outdegrees and indegrees (which, as the reader will see, are
simple measures of centrality and prestige, respectively). One must look
at ties directed to an actor to study that actor’s prestige. Since indegrees
are only distinguishable from outdegrees for directional relations, we will
not be able to quantify prestige unless the relation is directional.

We should note that the term “prestige” is perhaps not the best label
for this concept (in some situations). For example, if the relation under
study is one of negative affect, such as “despises” or “do not want as a
friend,” then actors who are prestigious-on this relation are not held in
very high regard by their peers. Such actors are certainly renowned, but
it is for negative feelings, rather than positive. Further, if the relation
is “advises,” the actors considered prestigious by their peers might be
those that are senders, rather than receivers. Nevertheless, the term has
become established in the literature, and we will use it, keeping in mind
that the substantive nature of the measured relation is quite important
when interpreting the property. :

Prestige has also been called status by authors such as Moreno (1934),
Zeleny (1940a, 1940b, 1941, 1960), Proctor and Loomis (1951), Katz
(1953), and Harary (1959¢c). We will introduce several status measures
later in this chapter. But we will label these indices rank measures, since
the term “status” has been used extensively in other network methodology
(see Chapters 9 and 10). All these actor prestige measures attempt to
quantify the rank that a particular actor has within a set of actors. Other
synonyms include deference, and simply popularity. Recently, Bonacich
(1972a, 1972b, 1987) has generalized Katz’s (1953), Hubbell’s (1965), and
Taylor’s (1969) ideas, and presented a new family of rank measures. All
these rank (or status) indices are examples of prestige measures, and we
will discuss them in detail later in the chapter.

We let P denote a particular prestige measure, which will be defined
for a specific actor, n;. There will be three measures introduced in this
chapter, so we will subscript P with an index for the particular measure
under study.

5.1.3 Group Centralization and Group Prestige

We should note that even though the focus of this chapter is on measures
for actors that primarily allow us to quantify importance, one can take
many of the measures and combine them across actors to get a group-
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level measure. These group-level measures allow us to compare different
networks easily. When possible in this chapter, we will give formulas
for group centralization or prestige measures, although most research on
these measures is restricted to centralization.

We should first ask exactly what a group-level index of centralization
is measuring. The general index that we introduce below has the property
that the larger it is, the more likely it is that a single actor is quite central,
with the remaining actors considerably less central. The less central actors
might be viewed as residing in the periphery of a centralized system. Thus,
this group-level quantity is an index of centralization, and measures how
variable or heterogeneous the actor centralities are. It records the extent
to which a single actor has high centrality, and the others, low centrality.
It also can be viewed as a measure of how unequal the individual
actor values are. It is (roughly) a measure of variability, dispersion, or
spread. Early network researchers interested in centrality, particularly
Leavitt (1951), Faucheux and Moscovici (1960), and Mackenzie (1966a),
proposed that group-level indices of centralization should reflect such
tendencies. Nieminen (1974) and Freeman (1977) also adopt this view,
and discuss group centralization measurement.

One can view such a centralized network in Figure 5.1. The star graph
is maximally central, since its one central actor has direct contact with
all others, who are not in contact with each other. Examining the other
two graphs in this figure should indicate that the degree of centralization
can vary just by changing a few ties in the network.

Freeman (1979) adopts a convenient, general mathematical definition
for a group-level index of centralization. Recall that C4(n;) 1s an actor
centrality index. Define C4(n*) as the largest value of the particular
index that occurs across the g actors in the network; that 15, Cq(n") =
max; C A (ni).

From these quantities, > 5, [C4(n") — C4(n;)] is the sum of the dif-
ferences between this largest value and the other observed values, while
max y ¢, [Ca(n*) — C4(m;)] is the theoretical maximum possible sum of
differences in actor centrality, where the differences are taken pairwise
between actors. This latter maximum is taken over all possible graphs,
with g actors. As we will see, this maximum occurs for the star graph.

The sum of differences becomes the numerator, while the theoretical
maximum possible sum becomes the denominator in Freeman’s index.
The denominator is a theoretical quantity, and is not computed by
looking at a specific graph; rather, it is calculated by considering all
possible networks, with a fixed g, and then determining analytically



5.2 Nondirectional Relations 177

how large the sum of differences can actually be. We have the general
centralization index:

_ g [Ca(n") — Ca(m)]
max S ¢ [Ca(n*) — Ca(n)]’

The index will always be between 0 and 1. C4 equals O when all actors
have exactly the same centrality index (that being C4(n")), and equals 1
if one actor, “completely dominates of overshadows” the other actors.

Yet another view of graph centralization is offered by Heivik and
Gleditsch (1975), who view centralization in a graph more simply than
Freeman as the dispersion in a set of actor centrality indices. Later in
this chapter, we show how such a view is related to Freeman’s approach.

We note that one could also construct group-level prestigious measures,
but the theoretical maximum values needed in the denominator are
usually not calculable (except in special cases). Thus, we usually use
something simpler (as we note later in this chapter) like a variance.

In addition to centralization measures, other researchers have proposed
graph-level indices based on the compactness of a graph. Bavelas (1950),
Flament (1963), Beauchamp (1965), and Sabidussi (1966) state that very
centralized graphs are also compact, in the sense that the distances
between pairs of nodes are small. These authors also proposed an index
of actor centrality based on closeness (that is, small distances), as we will
discuss later in this chapter.

We will illustrate the quantities defined in this chapter using two
examples. First, we will continue to use Padgett’s Florentine family
network as an example of a network with a nondirectional relation.
Second, we introduce the countries trade network as an example of
a network of nations, with trade of basic manufactured goods as a
directional relation.

Ca (5.1)

5.2 Nondirectional Relations

Suppose that we have a single set of actors, and a single, dichotomous
nondirectional relation measured on the pairs of actors. As usual, we
let X refer to the matrix of social network data. For such data, the ith
row of the sociomatrix is identical to the ith column. An example of
such a matrix can be found in Appendix B, and discussed in Chapter 2.
These data measure the alliances among families in 15th century Florence
formed by interfamilial marriages. The corresponding sociogram is shown
in Chapter 3, where it is discussed at length as an example of a graph
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with 16 nodes. In order to find the most important actors, we will look
for measures reflecting which actors are at the “center” of the set of
actors. We will introduce several definitions of this center, including
actors with maximum degree, betweenness, closeness, and information.

5.2.1 Degree Centrality

The simplest definition of actor centrality is that central actors must be
the most active in the sense that they have the most ties to other actors
in the network or graph. Nowhere is this easier to see than by comparing
a graph resembling a star to one resembling a circle, shown in Figure 5.1
for networks with g=7 actors. A star graph has the property that exactly
one actor has ties to all g — 1 other actors, and the remaining g — 1
actors have only their single tie to the first actor. The first actor is clearly
the most active, and one could view this high level of activity as a large
amount of centrality. This very active actor should thus have a maximal
centrality index. Here, we measure activity simply as degree. Contrast
this star graph with the circle graph also shown in Figure 5.1. A circle
has no actor more active than any other actor; indeed, all actors are
interchangeable, so all actors should have exactly the same centrality
index. Note also that this type of centrality focuses only on direct or
adjacent choices. Prominence here is equated to “activity” or simply
“degree.”

Actor Degree Centrality. The degree of an actor is important;
thus, a centrality measure for an individual actor should be the degree of
the node, d(n;). Thus, following suggestions made by Proctor and Loomis
(1951) and Shaw (1954), and then many other researchers (Glanzer and
Glaser 1959; Faucheux and Moscovici 1960; Garrison 1960; Mackenzie
1964, 1966a; Pitts 1965; Nieminen 1973, 1974; Czepiel 1974; Rogers
1974; and Kajitani and Maruyama 1976; and reviewed by Freeman
1979), we define Cp(n;) as an actor-level degree centrality index. We let

Cop(m) =d(n) =xip =Y x;;=> xp. (5.2)
f i

J

We need not comment on the properties of this measure; it is discussed
in detail in Chapter 4. We do note that one problem with this measure is
that it depends on the group size g; indeed, its maximum value is g— 1
Consequently, a proposed standardization of the measure
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d(n;)
g—1

is the proportion of nodes that are adjacent to n;. Cp(n;) is independent
of g, and thus can be compared across networks of different sizes.

Donninger (1986) considers the distribution of equation (5.3), using
the probabilistic graph models of Erdds and Renyi (1960). He gives an
approximation to the distribution of degrees, which can then be used
to place confidence intervals on both the actor- and group-level degree
indices.

A related index, one for “ego density,” is given by Burt (1982) and
Knoke and Kuklinski (1982). An ego density for a nondirectional relation
is simply the ratio of the degree of an actor to the maximum number of
ties that could occur. Kapferer (1969, 1973) generalizes this, and defines
another index, the “span” of an actor, as the percentage of ties in the
network that involve the actor or the actors that the primary actor is
adjacent to. Thus, the central actor in a star graph has a span of unity.

Refer to the three graphs of Figure 5.1. The degrees for the seven
actors in the star graph are 6 (for n;) and 1 (for ny — n7). Thus, the
denominator for the standardized actor-level indices Cj(n;) is g — 1= 6.
The standardized indices have values {1.0,0.167,...,0.167} — clearly
there is one maximally central actor, and six peripheral actors. The
degrees for the circle graph are all d(n;) = 2, so that the indices are
all equal: Cp(n;) = 0.333, indicating a low-moderate level of centrality,
constant across all actors. Lastly, contrast this network to the line graph,
in which n; — ns all have Cp(m) = 0.333 also, but the last two actors are
less central: Ch(ng) = Cp(n7) = 0.167. The absence of the line between
ng and n; (which is the difference between the circle graph and the line
graph) has forced these two actors to be less central than the other five.
These centralities and standardized centralities were calculated by hand,
although the program UCINET calculates these quantities as standard
output of its centrality subprogram.

An actor with a high centrality level, as measured by its degree, is
“where the action is” in the network. Thus, this measure focuses on
the most visible actors in the network (as required by Knoke and Burt’s
(1983) definition of prominence). An actor with a large degree is in direct
contact or is adjacent to many other actors. This actor should then begin
to be recognized by others as a major channel of relational information,
indeed, a crucial cog in the network, occupying a central location. In
contrast, and in accordance with this centrality definition, actors with
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low degrees are clearly peripheral in the network. Such actors are not
active in the relational process. In fact, if the actor is completely isolated
(so that d(n;) = 0), then removing this actor from the network has no
effect on the ties that are present.

Group Degree Centralization. We now present several degree-
based measures of graph centralization. A centralization measure quan-
tifies the range or variability of the individual actor indices. The set of
degrees, which represents the collection of actor degree indices, can be
summarized in a variety of ways. Freeman (1979) recommends use of the
general index (5.1). Applying his general formula for graph centralization
here we find

= i1 [Co(n”) — Cp(n)]
max Y ¢ [Cp(n*) — Cp(m)]’
The {Cp(m)} in the numerator are the g actor degree indices, while
Cp(n”) is the largest observed value. The denominator of this index can
be calculated directly (see Freeman 1979), and equals (g — 1)(g —2). Thus,
2% [Cp(n") — Cp(m)]

= = Dig =2 (5:3)

can be used as an index to determine how centralized the degree of the
set of actors is. The index is also a measure of the dispersion or range
of the actor indices, since it compares each actor index to the maximum
attained value.

This index reaches its maximum value of 1 when one actor chooses all
other g—1 actors, and the other actors interact only with this one, central
actor. This is exactly the situation in a star graph. The index attains
its minimum value of 0 when all degrees are equal, indicating a regular
graph (as defined in Chapter 4). This is exactly the situation realized
in the circle graph. Graphs that are intermediate to these two (such as
the line graph of Figure 5.1) have indices between 0 and 1, indicating
varying amounts of centralization of degree. In fact, the line graph has
a Cp = 0.067.

Another standard statistical summary of the actor degree indices is the
variance of the degrees,

(5.4)

4
Sp = [Z(CD(’%‘) - C—D)ZJ /g ' (5.6)

i=1
where Cp is the mean actor degree index. The variance is recommended as
a group-level index of centrality by Snijders (1981a, 1981b), reflecting the



5.2 Nondirectional Relations 181

view of Heivik and Gleditsch (1975) that centralization is synonymous
with the dispersion or heterogeneity of an actor index. This index attains
its minimum value of 0 when all degrees are equal or when the graph is
regular.

The maximum value of S3 depends on g and the entire set of de-
grees. Snijders (1981a, 1981b) recommends that one normalize S} by the
maximum possible variance given the set of degrees actually observed,
to obtain a dimensionless index. The formulas for undirected graphs are
complicated; we refer those interested to Snijders (1981a, 1981b). The
formulas for directed graphs are easier to report, and we do so later
in this chapter when we discuss directional relations. One can also test
statistically whether a graph is more heterogeneous (with regard to its
degree distribution) than expected by chance. Tests such as this one will
be described in general in Chapter 13.

Coleman (1964) also recommends the use of S3 as a measure of
“hierarchization” (similar to centralization). In fact, Coleman goes on
to suggest that one use a more general function of the degrees for this
measure; in particular, he chooses the function xlog(x), which yields
an information- or entropy-based measure of hierarchization, not unlike
those proposed by Mackenzie (1966b) or Stephenson and Zelen (1989)
(see below).

There are simpler group-level degree indices. In fact, recognizing that
the simplest actor-level index is the degree of the actor, one can take
the average of the degrees to get the mean degree, Cp =5 Cp(n)/g =
S xi1/g. This quantity varies between 0 and g — 1, so to standardize it,
one should divide by g—1. This average degree, divided by g—1, is exactly
the density of the graph: > Cp(n;)/g(g —1) = > Cp(ni)/g = A. Thus,
mathematically, the density is also the average standardized degree. The
densities of the three graphs in Figure 5.1 are 0.286 (star), 0.333 (circle),
and 0.286 (line).

The density of a graph is perhaps the most widely used group-level
index. It is a recommended measure of group cohesion (see Blau 1977),
and its use can be traced back at least as far as Kephart (1950) and
Proctor and Loomis (1951). Bott (1957) used densities to quantify network
“knittedness,” while Barnes (1969b) used them to determine how “close-
knit” empirical networks were. It is very important in blockmodels
and other role-algebraic techniques (see Part IV, particularly Chapter
10). Density takes on values between O (empty graph) and 1 (complete
graph), and is the average of the standardized actor degree indices,
{C}(n;)}, as well as the fraction of possible ties present in the network
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for the relation under study. Friedkin (1981) studies the use of density as
a summarization tool in network analysis, and concludes that densities
can be misleading, especially if the values are small. This result is often
due to the fact that as group sizes increase, network density decreases if
actor degrees remain unchanged. Friedkin recommends that both density
and group size be considered simultaneously, especially if the graph
shows tendencies toward subgrouping (see Chapter 7).

The density of a graph is, thus, an overly simplified version of a group-
level degree index, constructed by taking the actor degree indices and
ignoring Freeman’s two principles for group-level indices. It is also an
average. As is quite common in data analysis, averages are sometimes
difficult to interpret. One also needs information on how dispersed the
numbers that make up the average are. So, one frequently computes the
variance of these numbers, and reports it along with the average. We
therefore recommend the simultaneous use of centralization measures
such as S3 and Cp along with average degree and graph density.

It is important to note, however, that indices such as average degree
and density are not really centralization measures. As mentioned earlier,
centralization should quantify the range or variability of the individ-
ual actor indices. Thus, Sf,, and of course Cp are valid centralization
measures, while the average degree or the graph density, which are
quantifications of average actor tendencies rather than variability, are
not.

Example. Turn now to Padgett’s network of Florentine families
and examine the marriage relation. The standardized actor degree cen-
tralities are shown in the first column of Table 5.1 (along with other
actor-centrality and centralization indices which will be discussed later
in this chapter). These centralities were calculated using UCINET.

One can see that the Medici family (ng) is the most central family, with
respect to degree. For this actor, Cj(n9) = 0.400, an index considerably
larger than the next most central actors (Guadagni and Strozzi families),
with Cp(n7) = Cp(nys) = 0.267. Six of the families have an index of
0.200; the remaining seven families have small indices. The group-level
degree centralization index is Cp = 0.267, a rather small value, indicating
that the difference between the largest and smallest actor-level indices
is not very great. There is little variability. The average degree is
Cp = 40/16 = 2.50, quite small, but not surprising given the nature
of the relation (marital ties, something not particularly common). We
also note that the variance of the degrees (not the standardized actor
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Table 5.1. Centrality indices for Padgett’s Florentine families (" Actor and
centralization indices calculated by dropping ny; = Pucci from the actor
set.)

With g = 16 actors With g = 15 actors

Chm)  Cym) | Cplm)y  Celm)  Cpn) Cilm)
Acciaivoli 0.067 0.000 0.071 0.368 0.000 0.049
Albizzi 0.200 0.184 0.214 0.483 0.212 0.074
Barbadori 0.133 0.081 0.143 0.438 0.093 0.068
Bischeri 0.200 0.090 0.214 0.400 0.104 0.074
Castellani 0.200 0.048 0.214 0.389 0.055 0.070
Ginori 0.067 0.000 0.071 0.333 0.000 0.043
Guadagni 0.267 0.221 0.286 0.467 0.255 0.081
Lamberteschi  0.067 0.000 0.071 0.326 0.000 0.043
Medici 0.400 0.452 0.429 0.560 0.522 0.095
Pazzi 0.067 0.000 0.071 0.286 0.000 0.033
Peruzzi 0.200 0.019 0.214 0.368 0.022 0.069
Pucci 0.000 0.000 — . — — —
Ridolfi 0.200 0.098 0.214 0.500 0.114 0.080
Salvati 0.133 0.124 0.143 0.389 0.143 0.050
Strozzi 0.267 0.089 0.286 0.438 0.103 0.070
Tornabuoni 0.200 0.079 0214 0.483 0.092 0.080
Centralization ~ 0.267 0.383 0.257 0.322 0.437 —

degree centrality indices) S = 2.125, and the density of this relation
(which is the average standardized degree) is 0.167, indicating (as noted)
a relatively sparse sociomatrix. The density of this relation is quite a bit
less than that for the three hypothetical graphs in Figure 5.1, for instance.

5.2.2 Closeness Centrality

The second view of actor centrality is based on closeness or distance. The
measure focuses on how close an actor is to all the other actors in the
set of actors. The idea is that an actor is central if it can quickly interact
with all others. In the context of a communication relation, such actors
need not rely on other actors for the relaying of information, an idea
put forth by Bavelas (1950) and Leavitt (1951). As noted by Beauchamp
(1965), actors occupying central locations with respect to closeness can
be very productive in communicating information to the other actors. If
the actors in the set of actors are engaged in problem solving, and the
focus is on communication links, efficient solutions occur when one actor
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has very short communication paths to the others. Thus, this closeness
view of centrality relies heavily on economic considerations.

Hakimi (1965) and Sabidussi (1966) quantified this notion that cen-
tral actors are close, by stating that central nodes in a network have
“minimum steps” when relating to all other nodes: hence, the geodesics,
or shortest paths, linking the central nodes to the other nodes must be
as short as possible. With this explanation, researchers began equating
closeness with minimum distance. The idea is that centrality is inversely
related to distance. As a node grows farther apart in distance from other
nodes, its centrality will decrease, since there will be more lines in the
geodesics linking that node to the other nodes.

Examine the star network in Figure 5.1. The node at the center of this
star is adjacent to all the other nodes, has the shortest possible paths to
all the other actors, and hence has maximum closeness. There is exactly
one actor who can reach all the other actors in a minimum number of
steps. This actor need not rely on the other actors for its interactions,
since it is tied to all others.

Actor Closeness Centrality. Actor centrality measures reflecting
how close an actor is to the other actors in the network have been de-
veloped by Bavelas (1950), Harary (1959c), Beauchamp (1965), Sabidussi
(1966), Moxley and Moxley (1974), and Rogers (1974). As reviewed
by Freeman (1979), the simplest measure is that of Sabidussi (1966),
who proposed that actor closeness should be measured as a function of
geodesic distances. As mentioned above, as geodesics increase in length,
the centrality of the actors involved should decrease: consequently, dis-
tances, which measure the length of geodesics, will have to be weighted
inversely to arrive at Sabidussi’s index. Note how this type of centrality
depends not only on direct ties, but also on indirect ties, especially when
any two actors are not adjacent.

We let d(n;,n;) be the number of lines in the geodesic linking actors
i and j; that is, as defined in Chapter 4, d(e, e) is a distance function.
The total distance that i is from all other actors is Z _ d(ni,n;), where
the sum is taken over all j # i. Thus, Sabidussi’s (1966) index of actor
closeness is
g ~1
Ce(n) = [ > dm, nj)J . (5.7)
j=1
The subscript C is for “closeness.” As one can see, the index is simply the
inverse of the sum of the distances from actor i to all the other actors.
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At a maximum, the index equals (g — 1)~1, which arises when the actor is
adjacent to all other actors. At a minimum, the index attains the value of
0 in its limit, which arises whenever one or more actors are not reachable
from the actor in question. A node is said to be reachable from another
node if there is a path linking the two nodes; otherwise, the nodes are
not reachable from each other. Thus, the index is only meaningful for a
connected graph.

To verify this assertion, suppose that the graph is disconnected —
specifically, let there be one isolated node, with degree 0. The geodesics
from all the other nodes to this specific node (ni) are infinitely long
(d(ni,ng) = oo for all i #+ k), since the node is not reachable. Hence, the
distance sum for every actor is co, and the actor closeness indices are all
0. This is a large drawback of this index.

As we have noted, the maximum value attained by this index depends
on g; thus, comparisons of values across networks of different sizes are
difficult. Beauchamp (1965) made the suggestion of standardizing the
indices so that the maximum value equals unity. To do this, we simply
multiply Cc(n) by g — 1t

! g - 1
Ch(n) =
) = TS dinny)
= (g— DCc(m). (5.8)

This standardized index ranges between 0 and 1, and can be viewed as
the inverse average distance between actor i and all the other actors. It
equals unity when the actor is adjacent to all other actors; that is, when
the actor is maximally close to all other actors.

Graph theorists have simplified this concept of centrality, and talked
about the center of a graph, using the graph-theoretic notion of distance
(see Chapter 4). Specifically, the Jordan center (see Jordan 1869) of a
graph is the subset of nodes that have the smallest maximum distance
to all other nodes. To find such a center, one can take a g x g matrix
of geodesic distances between pairs of nodes (where the entries are the
lengths of the shortest paths or geodesics between all pairs of nodes),
and then find the largest entry in each row. These distances (which are
sometimes called eccentricities) are the maximum distances from every
actor to their fellow actors. One then simply finds the smallest of these
maximum distances. All nodes that have this smallest maximum distance
are part of the center of the graph.

A related notion is the centroid of a graph (see Sylvester 1882), which
is based on the degrees of the nodes and which is most appropriate
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for graphs that are trees. The idea is to consider all branches or paths
emanating from each node, and define the weight of each branch as the
number of lines in it. The weight of a node is the maximum weight of
any branch at the node. The centroid is thus the subset of all nodes that
have the smallest weight.

All the graphs in Figure 5.1 are connected, so that all geodesic distances
are finite; therefore, the closeness indices can be calculated. For the
star graph, C,(n1) = 1.0, while the other actors all have indices equal
to 0.545. For the circle graph, the actor indices are all equal to 0.5.
For the line graph, the indices vary from CL(n;) = 0.50 to a low of
Ci(ng) = Ci(n7) = 0.286.

We note that there are clever algorithms for finding the geodesics in
a graph, and then computing their lengths. We refer the reader to (for
example) Flament (1963), and Harary, Norman, and Cartwright (1965).
Such algorithms are standard in network computing programs such as
UCINET and SNAPS (see Appendix A).

Group Closeness Centralization. We now consider how to mea-
sure group centralization using actor closeness centralities. We first report
Freeman’s (1979) index, which uses the general graph centralization in-
dex, (5.1), given above. We then will consider alternative group closeness
indices.

Freeman’s general group closeness index is based on the standardized
actor closeness centralities, shown in equation (5.8). This index has
numerator

g

> ICen’) — Ce(ml,

i=1
where C(n") is the largest standardized actor closeness in the set of ac-
tors. Freeman shows that the maximum possible value for the numerator
is [(g — 2)(g — 1)]/(2g — 3), so that the index of group closeness is

Ce = i [Ce(n”) = Cr(m)] .
(g —2)(g —1)]/(2g - 3)

This index, as with the group degree centralization index, reaches its
maximum value of unity when one actor “chooses” all other g — 1 actors
(that is, has geodesics of length 1 to all the other actors), and the other
actors have geodesics of length 2 to the remaining (g — 2) actors. This is
exactly the situation realized by a star graph. The proof of this fact is
rather complicated, and must be done by induction. We refer the reader

(5.9)
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to Freeman (1979). The index can attain its minimum value of 0 when
the lengths of geodesics are all equal, for example in a complete graph
or in a circle graph. For the line graph of Figure 5.1, the index equals
0.277, a relatively small value.

Bolland (1988) proposes a measure (for both actors and groups) that
utilizes both degree and closeness of actors. His “continuing flow”
centrality index is based on the number of paths (of any length) that
originate with each actor. Thus, the measure considers all paths, those of
length 1 (that are the focus of Cp) and those indirect (whose distances
are reflected in the magnitude of C¢). We discuss this measure in more
detail at the end of this chapter.

There are other group-level closeness indices. We may simply sum-
marize the set of g actor-level closeness centralities {C¢(n;)} by a single
statistic, reflecting the tendency toward closeness manifested by all the
actors in the set of actors. Such a statistic, to be an effective index, should
reach its extremes in the cases of the circle graph (equal distances), and
the star graph (one minimally distant actor).

We recommend that one calculate the variance of the standardized
actor closeness indices,

g
S¢ = {Z(Clc(”i) — ?:’cf} /g (5.10)
i=1

which summarizes the heterogeneity among the {Cr(n;)}. We note that
average normed closeness, Cc = »_ Cc(ni)/g, is simply the mean of
the actor-level closeness centralities. The variance attains its minimum
value of 0 in a network with equal actor indices (in this case, equal
distances between all nodes). Such a network need not be complete
(have maximal degree). This index grows as the network becomes less
homogeneous (with respect to distances), and thus more centralized. The
average normed closeness, Cc, together with S2, provide simple summary
statistics for the entire set of actor closeness indices.

The Example Again. Consider again Padgett’s network data, dis-
cussed earlier. Actor nj; = Pucci (as can be seen from the actor degree
centrality value of Cp(ny2) = 0) is an isolate. Consequently, the distances
to this actor from all other actors are infinite, and thus, family Pucci is
not reachable and the graph is not connected. Actor closeness centrality
indices are then also infinite, and cannot be calculated.

Thus, we dropped family Pucci from the set of actors, giving us a
smaller network of g — 1 = 15 families, but now we have (for the purpose
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of demonstrating the calculations of closeness centralities) a connected
graph. The actor centralities and centralization indices calculated for this
smaller network are shown in Table 5.1 and are indexed with asterisks
to distinguish them from indices calculated for the full set of actors. The
actor closeness centralities are shown in Column 4, while the actor degree
centralities for the smaller set of actors (sans family Pucci) are shown
in Column 3. Once again family Medici is the most central actor, but
several families are almost as central: Albizzi, Guadagni, Ridolfi, and
Tornabuoni.

Note that family Strozzi, which had a rather large actor degree central-
ity index, has a relatively small actor closeness centrality index. Strozzi
has apparently married into a moderately large number of other families,
but is not particularly close to the other families; that is, there are many
“steps” in the marital linkages from Strozzi to the others.

The closeness indices are much larger than the degree indices, and
none of the families have small values. Families Acciaiuoli, Ginori,
Lamberteschi, and Pazzi are still the least central. These indices also
vary less than the degree indices (from 0.326 to 0.560, as opposed to
0.071 to 0.429 for degree centralities), indicating a much more uniform
spread of closenesses. The closeness centralization index is Cp = 0.322,
calculated for the smaller network, and the average closeness centrality
and variance are C¢ = 0.415 and S2 = 0.0056. This is a small variance,
indicating once again the small range of the actor closeness centralities.

5.2.3 Betweenness Centrality

Interactions between two nonadjacent actors might depend on the other
actors in the set of actors, especially the actors who lie on the paths be-
tween the two. These “other actors” potentially might have some control
over the interactions between the two nonadjacent actors. Consider now
whether a particular actor might be able to control interactions between
pairs of other actors in the network. For example, if the geodesic between
actors ny and ns is mynyngny — that is, the shortest path between these
actors has to go “through” two other actors, n; and ny — then we could
say that the two actors contained in the geodesic might have control
over the interaction between n; and n;. Glance again at our star network
in Figure 5.1, and note that the most central actor lies on all fifteen
geodesics linking the other six actors. This “actor in the middle,” the one
between the others, has some control over paths in the graph. A look at
the line network in Figure 5.1 shows that the actors in the middle of this
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graph might have control over some of the paths, while those at the edge
might not. Or, one could state that the “actors in the middle” have more
“interpersonal influence” on the others (see Freeman 1979, or Friedkin
1991).

The important idea here is that an actor is central if it lies between
other actors on their geodesics, implying that to have a large “between-
ness” centrality, the actor must be between many of the actors via their
geodesics.

Several early centrality researchers recognized the strategic importance
of locations on geodesics. Both Bavelas (1948) and Shaw (1954) sug-
gested that actors located on many geodesics are indeed central to the
network, while Shimbel (1953) and Cohn and Marriott (1958) noted that
such central actors play important roles in the network. None of these
researchers, however, were able to quantify this notion of betweenness.
It took roughly twenty years, however, until Anthonisse (1971), and later
Freeman (1977) and Pitts (1979), suggested that the the locations of
actors on geodesics be examined.

Actor Betweenness Centrality. Let us simply quote from Shimbel
(1953), reiterated by Pitts (1979), who stated the importance of geodesics
and the actors they contain for measuring betweenness and network
control:

Suppose that in order for [actor] i to contact [actor] j, [actor] k must
be used as an intermediate station. [Actor] k in such a network has
a certain “responsibility” to [actors] i and j. If we count all of the
minimum paths which pass through [actor] k, then we have a measure
of the “stress” which [actor] k must undergo during the activity of the
network. (page 507)

Here, actors who have sufficient stress also possess betweenness, accord-
ing to this rather political view of network flows.

Specifically, one should first count the number of geodesics linking
actors j and k (all these geodesics will be of the same length, d(n;, ny)),
and then determine how many of these geodesics contain actor i, for all
distinct indices i, j, k. Shimbel goes on to state that

A vector giving this [count of minimum paths] for each [actor] of the
network would give us a good idea of the stress conditions throughout
the system. (page 507; emphasis is ours)

Shaw (1954) was the first to recognize that this stress was also be-
tweenness, noting that, in the case of a communication relation where
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actors could not form new lines, central actors could refuse to pass along
messages. Anthonisse (1971) and Freeman (1977) first quantified this
idea.

We want to consider the probability that a “communication,” or simply
a path, from actor j to actor k takes a particular route. We assume that
lines have equal weight, and that communications will travel along the
shortest route (regardless of the actors along the route). Since we are
just considering shortest paths, we assume that such a communication
follows one of the geodesics. When there is more than one geodesic
between j and k, all geodesics are equally likely to be used. Freeman
estimates this probability as follows: Let g ik be the number of geodesics
linking the two actors. Then, if all these geodesics are equally likely to be
chosen for the path, the probability of the communication using any one
of them is simply 1/g;. We also consider the probability that a distinct
actor, i, is “involved” in the communication between the two actors. We
let gji(n;) be the number of geodesics linking the two actors that contain
actor i. Freeman then estimates this probability by gjk(ni)/gjk, making
the critical assumption that geodesics are equally likely to be chosen for
this path. (We comment on this assumption later in the chapter.)

The actor betweenness index for n; is simply the sum of these estimated
probabilities over all pairs of actors not including the ith actor:

Colm) = guln)/gj (5.11)

Jj<k

for i distinct from j and k. So, this index, which counts how “between”
each of the actors is, is a sum of probabilities. It has a minimum of
zero, attained when n; falls on no geodesics. Its maximum is clearly
(g — 1)(g — 2)/2, which is the number of pairs of actors not including n;.
The index reaches the maximum when the ith actor falls on all geodesics.
Since the index’s values depend on g, we standardize it Jjust like the other
actor centrality indices:

Cp(m) = Cp(m)/[(g — 1)(g — 2)/2]. (5.12)

Standardized in this way, it now takes on values between 0 and 1, and
can easily be compared to the other actor indices, as well as across
networks and relations. Unlike the closeness indices, these betweenness
indices {Cp(n;)} can be computed even if the graph is not connected. This
is certainly an advantage. As with our other actor indices, algorithms for
first finding the geodesics in a graph, and then counting how many of
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them contain each of the actors, are available, and are implemented in
network computer programs such as UCINET.

The quantities summed on the right-hand side of equation (5.11) are
discussed in more detail in Freeman (1980a). Specifically, if we sum
the gjx(n;)/gjx estimated probabilities over k, we obtain measures of the
pair-dependency of actor j on actor i. These values, which can also
be viewed as indices of how much “gatekeeping” n; does for nj, are
crucial components of both the {Cg(n;)} and the {Cc(n;)}. Gatekeeping
of one actor for another is simply the act of being on geodesics from
the latter actor to all other actors, regardless of where the geodesics are
going. Actors on whom others are “locally dependent” are central in
the network. One can measure the level of gatekeeping for every pair
of actors in the network, focusing on how much gatekeeping the second
actor does for the first.

Returning again to the graphs of Figure 5.1, we find that for the
star graph, Cp(n;) = 1.0, while Cy(ny) = -+ = Cp(n7) = 0. This is an
idealized situation, since only actor 1 lies on any of the geodesics. The
actor betweenness indices in the circle graph are all equal to 0.2, and
for the line graph, vary from Cp(n;) = 0.6 to Cy(ng) = Cp(ny) = 0.
In this last graph, actors ny and n3 are almost as central as ny, since
Cg(ny) = Cg(ns) = 0.533.

Group Betweenness Centralization. Group centralization indicies
based on betweenness allow a researcher to compare different networks
with respect to the heterogeneity of the betweenness of the members of
the networks. We first report Freeman’s (1979) index for quantifying the
overall level of betweenness in the set of actors, which summarizes the
actor betweenness indices given in equation (5.11).

Freeman’s group betweenness centralization index has numerator

¢ [Cp(n") — Cp(m)], where Cp(n”) is the largest realized actor between-
ness index for the set of actors. The reason for using the nonstandardized
indices rather than the standardized ones (see equation (5.12)) will fol-
low. Freeman shows that the maximum possible value for this sum is
(g — 1)*(g — 2)/2, so that the index of group betweenness is

o _ 235, [Caln’) — Cp(m)]
g (e—D2g—2]

Freeman (1979) shows that this simplifies to the index given in Freeman
(1977):

(5.13)
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¢, = ZECh) = Chm)]. 5.1

(g—1)
that is, the calculation can also be made equivalently with the standard-
ized indices. Freeman (1977) also demonstrates that the index reaches its
maximum value (unity) for the star graph. Its minimum value (0) occurs
when all actors have exactly the same actor betweenness index — that
is, in a network in which all actors are equal in betweenness. The line
graph of Figure 5.1 has Cp = 0.311.

There are additional group-level betweenness indices, for example the
variance of the actor-level betweenness indices. Such centralization in-
dices provide additional summaries of the heterogeneity or variability of
betweenness in the entire set of actors.

The Example, Once Again. Actor betweenness centralities are
given for Padgett’s Florentine families and the marriage relation in Ta-
ble 5.1, Columns 2 and 5. The second column gives the betweenness
centralities calculated for the network consisting of all actors, and the
fifth column, for the network without the Pucci family. Note how many
actors have 0 indices — families Acciaiuoli, Ginori, Lamberteschi, Pazzi,
and of course Pucci — the same actors that had the smallest actor close-
ness centrality indices. The betweenness indices allow the Medici family,
and, to a lesser extent, the Guadagni family, to stand out, just as with
the actor degree centralities.

Clearly, families Medici and (perhaps) Guadagni are the most central
families in this set of actors on this marital relation. The betweenness
centralization index is Cp = 0.437, larger than the other centralization
indices, reflecting the fact that the Medici family is much more central
than any of the other families.

Note how these betweenness indices compare to the other two actor
centrality indices. Some actors with moderately large closeness and
degree scores have small betweenness indices — families Barbadori and
especially Tornabuoni. Family Strozzi, which has a large degree index, has
a small betweenness index. Such differences indicate that the betweenness
indices can be quite different measures of actor centrality than degree-
and closeness-based indices.

5.2.4 @lInformation Centrality

Of all these indices, Freeman’s centrality measure based on betweenness
of actors on geodesics has found the most use, because of its general-
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ity. But, this index assumes that all geodesics are equally likely when
estimating the critical probability that an actor falls on a particular
geodesic. That is, if there are g;; geodesics between actors i and j, then
the probability that a particular geodesic is “chosen” for the “flow of
information” between these two actors is simply 1/g;;. While this is a
justifiable assumption for some purposes, it may not be appropriate here.

Suppose we focus on the actors “contained” in these geodesics. Free-
man ignores the fact that if some actors on the geodesics have large
degrees, then the geodesics containing these expansive actors ar¢ more
likely to be used as shortest paths than other geodesics. That is, if an
actor has a degree of, say, 10, and this actor is on a geodesic, then
this actor is more likely than actors with smaller degrees to be on other
geodesics, simply because of its expansiveness. Freeman’s assumption is
reasonable only if all actors have equal degrees. For such regular grapbhs,
it is not unreasonable to assume that all geodesics between a pair of
nodes are equally likely to be “used” for a path. Relaxing this assump-
tion is difficult, and requires a more sophisticated statistical model that
allows for unequal probabilities.

A second, more important generalization can also be considered. Free-
man, in considering betweenness counts, focuses only on geodesics. That
is, paths with distances greater than the minimum path length attained
by the geodesics are ignored. Substantively, this might not be realistic.
For example, if we consider communication relations, there may be good
reasons for actors to choose paths for their communications that are
longer than the geodesics. We quote:

It is quite possible that information will take a more circuitous route
either by random communication or [by being] channeled through many
intermediaries in order to “hide” or “shield” information. (Stephenson
and Zelen 1989, page 3)

So, it may make sense to generalize the notion of betweenness centrality
so all paths between actors, with weights depending on their lengths, are
considered when calculating betweenness counts.

The index of centrality developed by Stephenson and Zelen (1989)
does exactly this. One considers the combined path from one actor to
another, by taking all paths, including the geodesics, and assigning them
weights. A weighted function of this combined path is then calculated,
using as weights the inverses of the lengths of the paths being combined.
The weights assigned to the paths making up the combined path are
determined so that the “information” in the combined path is maximized.
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Geodesics are usually given weights of unity, while paths with lengths
longer than the geodesic length receive smaller weights based on the
information that they contain. The information of a path is defined quite
simply as the inverse of its length.

Mackenzie (1966b) was the first to propose the use of information
theory for the study of centrality, particularly in commnication networks.
He defined a “Total Participation Index” for actors in a network, but his
rather mathematical presentation has prevented wider adoption of the
idea. Bolland’s (1988) index of continuing flow also considers all paths
originating with each actor, but does not consider betweenness counts.

The concept of information is quite old, and has a rich tradition in
statistics (Shannon and Weaver 1949; Khinchin 1957; Kullback 1959;
Gokhale and Kullback 1978; see also Coleman 1964; Theil 1967; and
Allison 1978, for applications in economics and sociology). It is used
extensively in estimation theory and categorical data analysis. Informa-
tion is usually defined as the inverse of the variance of an estimator. If
an estimator has a small variance, it has large information, and thus is
considered “good.” The opposite is also true: poor estimators with large
variances have little information. We can apply this approach to central-
ity by extending betweenness on geodesics to all possible paths, weighting
according to the information that these paths contain. The betweenness
counts are then generalized to reflect the information contained in all
paths.

Stephenson and Zelen (1989) give a nice discussion of the use of
information in statistical estimation as applied to the paths between
nodes in a graph. In brief, the length of any path is directly related to
the variance of transmitting a signal from one node to another; thus, the
information contained in this path is the reciprocal of this variance. Thus,
any path (and hence, each and every combined path) has an “information
content.” Lastly, the information of a node is the harmonic average of
the information for the combined paths from the node to all other nodes.

Actor Information Centrality. This version of centrality focuses
on the information contained in all paths originating with a specific actor.
The information of an actor averages the information in these paths,
which, in turn, is inversely related to the variance in the transmission of
a signal from one actor to another.

To calculate information centrality indices, Stephenson and Zelen rec-
ognized that the information contained in an incidence matrix (see Chap-
ter 4), which codes the nodes and the links between them, is exactly the
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same as the information contained in the data vector and incidence ma-
trix for an incomplete block design with two treatments per block (see
Cochran and Cox 1957). This exact equality allowed Stephenson and
Zelen to adopt a statistical model, common in the statistical design of
experiments (see St. John and Draper 1975; Box, Hunter, and Hunter
1978; Silvey 1981), designed for such incomplete block designs. The
model focuses on all the “signals” flowing between all pairs of nodes
(or pairs of rows of the incidence matrix). One estimates the strengths
of these signals, and calculates their variances. If Vi is the variance of
the estimate of the signal for the path linking nodes ; and ny, then the
information associated with this path is simply 1/Vji. The information
for an actor is a function of all the information for paths flowing out
from the actor. The chosen function is the harmonic average. We refer
the reader to the appendix of Stephenson and Zelen (1989) for more
mathematical details.

To apply this idea to graphs, the actor information indices are functions
of a simple g X g matrix. We give the most general formulation of
the index, which assumes that the relation 1s nondirectional, but not
necessarily dichotomous. A crucial component of the formula is the sum
of the strengths or values for the lines incident with a node. This sum is
simply a row total (or column total) of the sociomatrix. The sum is the
degree of a node when the measured relation is dichotomous, or the sum
of the strengths of all ties incident to a node when the relation is valued.

The calculation begins as follows. One first creates a g x g matrix A,
which has diagonal elements

a; = 1+ sum of values for all lines incident to n; (5.15)

and off-diagonal elements

4y = { 1 if nodes n; and n; are not adjacent (5.16)

1 —x;; if nodes n; and n; are adjacent.

As usual, x;; 18 the value of the tie between actors i and j, so that
the elements of A are easily calculated from the sociomatrix. One next
calculates the inverse of A: C = A-!, which has elements {c;;}.

We should note that not every A matrix can be inverted. In fact, if the
sociomatrix has one (or more) rows (and hence columns) full of zeros,
the corresponding C is not defined. In this instance, actor information
centralities cannot be computed. We recommend that the actors who are
isolates be dropped from the set of actors, and indices calculated just for
the non-isolates.
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To get the information indices, one needs two intermediate quantities.
These are sums of elements of C: T =3¢ ¢z and R = 3% ¢;j. T is
simply the trace or the sum of the diagonal entries of the matrix, while
R is any one of the row sums (all the row sums are equal). With these
two quantities, and the elements of C, one lastly calculates

1
ci +(T —2R)/g

as the information centrality index for actor i.

This index measures how much information is contained in the paths
that originate (and end) at a specific actor. The index has a minimum
value of 0, but no maximum value; indeed, if T = 2R, and ¢; = 0, the
index would equal co. Stephenson and Zelen (1989) recommend that one
use relative information indices, obtained by dividing each index C;(n;)
by the total of all indices:

Cr(n)
> Cr(ny)’

The relative information indices, {C;(n;)}, are bounded by 0 and 1, and
sum to unity. These indices can be interpreted as the proportion of total
“information” flow in a graph controlled by an individual actor. The
constraint that the indices sum to unity is unique to this index, and
makes comparisons with the other actor-level centrality indices difficult.
Necessary calculations are not complicated, and involve manipulations of
the sociomatrix, and then a single matrix inversion. One can “program”
them with SAS PROC IML or GAUSS.

Return once again to the graphs of Figure 5.1. We find that for
the star graph, C;(n;) = 0.2340, while C;(n;) = --- = Cg(n7) = 0.1277.
Notice that even though only node n; lies on any of the geodesics, the
information centralities for the other six nodes are not zero. The actor
information indices in the circle graph are all equal to 0.1429, and for the
line graph, vary from Cj(n;) = 0.1822 to Cj(ng) = Cj(n7) = 0.1041. In
this last graph, nodes n, and n; are almost as central as ny, since C;(ny) =
C;(n3) = 0.1682. Remember that the actor information centralities are
normed differently from the other actor centralities — they must sum to
unity, so that if one actor has a large index, the other actors must have
smaller indices.

Use of this information index has been limited. Stephenson (1989)
and Stephenson and Zelen (1989) apply this methodology to networks of
baboons, while Stephenson (1989) and Frey (1989) use this index (and

Ci(ny) = (5.17)

Cj(n) = (5.18)
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others) to study a network of forty AIDS patients, linked by sexual
contact (Auerbach, Darrow, Jaffe, and Curran 1984; Klovdahl 1985; see
also Laumann, Gagnon, Michaels, Michael, and Coleman 1989; Morris
1989, 1990). Marsden (1990b) has used information indices in a study
of the effect of random sampling on estimation of the parameters of the
network effects or social process model (see Erbring and Young 1979;
Doreian 1981; Friedkin 1986, 1990; Marsden 1990a; and Burt 1987).

Group Information Centralization. The summary group-level in-
formation index proposed by Stephenson and Zelen is simply the average
information across actors:

Cr =Y Ci(m). (5.19)

This index has limits that depend on g, unfortunately, and so is difficult to
compare across networks. As we have mentioned throughout this chapter,
averages are not centralization indices. A real group-level information
centralization index is the variance of the actor information indices:

8
S? = {Z(c;(n» - ?:})2} /g (5.20)
i=1

One could also apply Freeman’s (1979) general index (5.1) to informa-
tion indices, although (to our knowledge) no one has calculated the
denominator (the maximum possible sum of differences between the ob-
served indices and the largest attained index) for a Freeman information
centralization index.

For the graphs of Figure 5.1, the variances are 0.001614, 0.000986, and
0.0, for the star, line, and circle graphs, respectively. Thus, the star graph
is most heterogeneous, and the circle, the least.

As mentioned, this information actor-level index of centrality is the
only index (that we are aware of) that can be applied to valued relations.
Further, as we have discussed, it generalizes Freeman’s widely used
index of betweenness, since it considers all paths, not just geodesics.
We comment further on the differences among all the indices discussed
here at the end of the chapter. Further research and application should

demonstrate the usefulness of the actor information centrality index
(5.18).

Last Look at Padgett’s Florentine Families. As we have noted,
family Pucci is not married to any other families; it is an isolate, and
consequently, the actor information centralities cannot be calculated
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because the C matrix cannot be inverted. Thus, we dropped this acto
from the set of actors, and calculated actor information centralities for
the other fifteen actors. These indices are shown in Column 6 of Table 5.1.

It is difficult to compare these indices to the others, since only the
information centralities are constrained to sum to unity. They must be
between 0 and 1, just like all the other types of centrality, but are forced
to be smaller in magnitude because of this constraint.

The Medici family is still the most central family, although the
Guadagni, Tornabuoni, and Ridolfi families have indices not much
smaller than that for Medici. These four families consistently have
the largest actor centrality indices. The Pazzi, Ginori, Lamberteschi, and
Acciaiuoli families are the least central families; in fact, the ordering of
the actors with respect to information centrality is almost identical to
that for betweenness centrality. The main difference between the two
sets of centralities is the range of values — the range is much smaller
for information. The variance of the actor information centralities is
S? = 0.000297, quite small, reflecting the small range of the values due
to the unity summation constraint.

We now turn to indices that can be applied to social network data
consisting of directional relations.

5.3 Directional Relations

In the previous section, we discussed nondirectional relations, and intro-
duced four actor-level indices for centrality (and associated centralization
indices). These indices are:

(i) Degree — equation (5.3)

(ii) Closeness — equation (5.8)
(iii) Betweenness — equation (5.12)
(iv) Information — equation (5.18)

We now discuss how these, and other kinds of indices (specifically, those
designed to measure prestige), can be calculated for directional relations.

Suppose that we have a single set of actors, and a single, dichotomous
directional relation. With such data, we can distinguish between “choices
made” and “choices received.” An example of such data that we will
be analyzing in this section can be found in Chapter 2; specifically, the
countries trade network data which show import and export of basic
manufactured goods among a collection of g=24 countries. These data
are discussed in some detail in Chapter 2, and will be examined at
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length in Chapters 9-12. Clearly for these data, imports are substantively
different from exports, and it is interesting to study which actors are
important importers and which are significant exporters. To identify
these important actors on this relation, we will examine both aspects of
prominence: centrality and prestige.

As mentioned at the beginning of the chapter, centrality indices for
directional relations generally focus on choices made, while prestige
indices generally examine choices received, both direct and indirect. We
will discuss how to calculate centrality indices for directional relations
here, but the emphasis in this section will be prestige, and in particular,
three types of prestige indices.

We first discuss how the four centrality indices, degree, closeness,
betweenness, and information, can be extended to directional relations.
For this extension, we examine actors from the perspective of the choices
or nominations that are made. Two of the centrality indices are easily
applied to directional relations (degree and closeness indices), while the
other two (betweenness and information), because of their reliance on
nondirected paths and geodesics, are not.

One can also examine the choices received by actors. This allows us to
study which actors in the set of actors are prestigious. We will present
and discuss three types of prestige indices.

5.3.1 Centrality

To extend to directional relations the centrality indices based on degree,
closeness, betweenness, and information, and the group-level indices
which aggregate the actor-level indices (equations (5.5), (5.9), (5.13),
(5.19)), we must consider how each is computed and how the network
properties that are crucial for each are defined for directional relations.

Degree. An actor index for degree centrality can easily be cal-
culated for directional relations. Such indices are meaningful if no
restrictions, as in a fixed choice design, are placed on the choices made
by the actors. Since centrality indices focus on the choices made, we
take the outdegree of each actor, rather than the degree (which we used
for nondirectional relations): Cp(n;) = Xi1/(g — 1) A group-level index
of degree centralization can be calculated as suggested in equation (5.4).
The denominator of this index when the measured relation is directional
can be calculated to be (g — 1)>. These actor and group-level indices have
exactly the same properties as degree indices for nondirectional relations.
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Closeness. An actor index for closeness centrality can also be
calculated for directional relations. Specifically, we define the distances
between any two actors, as discussed in Chapter 4, as the length of the
geodesic(s) from n; to n;. With a directed graph, the geodesic(s) from n;
to n; may not be the same as the one(s) from n;j to ny, so that d(n;, n;),
the length of the geodesic(s), may not equal d(n;, n;). These {d(n;,n;)} are
elements of a g x ¢ distance matrix.

Actor-level centrality indices for closeness are calculated by taking the
sum of row i of the distance matrix to obtain the total distance »; is from
all the other actors, and then dividing by g — 1 (the minimum possible
total distance). The reciprocal of this ratio gives us an actor-level index
for closeness. The formula is exactly the same as for nondirectional rela-
tions. Specifically, the actor-level closeness centrality index for directional
relations is

g
Celm)=(g—1)/|> _dn,n)|. (5.21)

j=1

This index has exactly the same properties as discussed following equation
(5.8). A group-level closeness index based on Freeman’s general formula
(5.1) can be obtained using the standardized indices; however, to our
knowledge, no one has calculated the denominator of this index when
the measured relation is directional.

One problem with this actor-level centrality index based on closeness
is that it is not defined unless the digraph is strongly connected (that is,
if there is a directed path from i to j, for all actors i and J); otherwise,
some of the {d(n;,n;)} will be oo, and equation (5.21) will be undefined.
The same problem arises with graphs based on nondirectional relations,
as discussed earlier. One remedy to this problem is to consider only those
actors that i can reach, ignoring those that are unreachable from i.

This simple index, C¢(n;), can be generalized by considering the in-
Sluence range of n; as the set of actors who are reachable from n;. This
set contains all actors who are reachable from i in a finite number of
steps. This notion is common to graph theory, and is related to an idea
first used by Lin (1976) to describe the set of actors reachable to n; (see
below). We define J; as the number of actors in the influence range of
actor i. This count J; equals the number of actors who are reachable from
n;. Note that this idea can also be applied to nondirectional relations.

An “improved” actor-level centrality closeness index considers how
proximate n; is to the actors in its influence range. We define closeness
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now by just focusing on distances from actor i to the actors in its influence
range. We consider the average distance these actors are from n;. This
average distance, > d(ni,n i)/ Ji, where the sum is taken over all actors j
in the influence range of actor i, is a refined measure of closeness. Note
that this sum ignores actors who are not reachable from n;, so that unlike
the first closeness centrality measures, it is defined even if the graph is
not strongly connected. We can define

. Ji/(g — 1)

Ci(n) = ==———+> 5.22
) = 5= din,mp) /7, 522
where the summation again is just over those actors in the influence
range of n;.

One can see that this index is a ratio of the fraction of the actors in
the group who are reachable (J; /(g — 1)), to the average distance that
these actors are from the actor (3" d(n;, n;)/J;). This index is quite similar
to an index for prestige that we discuss in the next section.

Other. The other two centrality indices for nondirectional rela-
tions, based on betweenness and information, were derived using theory
and algorithms designed specifically for nondirectional relations. Gould
(1987) has extended the betweenness index to directional relations, by
considering geodesics between any two actors. Gould shows that the al-
gorithm to find actor betweenness indices for nondirectional relations can
be applied to directional relations, since the basic algorithm automatically
uses ordered (rather than unordered) pairs of actors.

The {Cp(n;)} indices defined in equation (5.11) are thus calculated
correctly for both directional and nondirectional relations; however, the
{Cy(m)} indices defined in equation (5.12) must be multiplied by 2. The
maximum value for the index is (g — 1)(g —2), so that these standardized
scores must be multiplied by a factor of two to be correct (since the
maximum for nondirectional relations is (g — 1)(g — 2)/2). We note that
Gould’s (1987) extension is based on the assumption that a directional
relation can be turned into a nondirectional relation by coding all mutual
dyads as lines and ignoring asymmetric dyads. Thus, there is a line in the
derived undirected graph between two actors if and only if both actors
choose each other in the original digraph.

For an information index, we could consider directed geodesics and
longer directed paths between actors. All these paths will be directed,
givén the nature of the data. However, we do not know how to gen-
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eralize Stephenson and Zelen’s (1989) theory for information indices to
directional relations.

Thus, we recommend the use of just two centrality indices, Cp(n;),
and Cp(n;) or Ci(n;), for directed graphs. In our later discussions of
the countries trade network data, we calculate not only actor prestige
indices, but also these two actor centrality indices. Since choices received
are usually more interesting than those made, neither of these centrality
indices is as useful as the measures of prestige that we discuss below. If
the relation allows one to distinguish between choices made and choices
received, then the latter, along with prestige indices calculated from them,
can give important insights into social structure, as we will demonstrate
with our example.

5.3.2 Prestige

With directional relations, choices received are quite interesting to a
network analyst. Thus, measures of centrality may not be of as much
concern as measures of prestige. We now discuss several prestige mea-
sures, which we will illustrate on the countries trade network data. We
recommend that both centrality and prestige measures be computed for
directional relations, since they do attempt to measure different structural
properties.

There has been little research on group-level prestige indices. However,
such measures would certainly be welcome and interesting, since they
could quantify prestige heterogeneity (and possibly hierarchization or
network stratification).

We also note that there has been little work done on applications of
prestige measures to actual digraphs. For example, it is not known which
digraphs have maximal group-level prestige indices. More research on
such important issues is clearly needed.

Degree Prestige. The simplest actor-level measure of prestige 1s
the indegree of each actor, which we denoted by d;(n;) in Chapter 4. The
idea is that actors who are prestigious tend to receive many nominations
or choices (see Alexander 1963). So, we define

Pp(n;) = di(n;) = x4 (5.23)

As with the comparable indices based on outdegrees, equation (5.23) is
dependent upon the group size g; thus, the standardization
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X4i
g—1

Pp(n) = (5.24)
gives us the proportion of actors who choose actor i, which is sometimes
called a “relative indegree.” The larger this index is, the more prestigious
is the actor. Maximum prestige occurs when Pp(n;) = 1; that is, when
actor i is chosen by all other actors. This index is quite simple to com-

pute, and is usually provided as output from network analysis computer
packages, such as UCINET.

Proximity Prestige. This simple index, Pp(n;), counts only actors
who are adjacent to actor i. One can generalize this index by defining the
influence domain of actor i as the set of actors who are both directly and
indirectly linked to actor j. Such actors are reachable to i, or alternatively,
are those from whom i is reachable. Reachability is discussed in Chapter
4. Thus, the influence domain consists of all actors whose entries in the
ith column of the distance matrix or the reachability matrix are finite.
This notion was first used by Lin (1976). We define I; as the number of
actors in the influence domain of actor i. This count I; equals the number
of actors who can reach actor i. We use the idea of an influence domain
in the next prestige index.

A second actor-level index of prestige considers how proximate n; is
to the actors in its influence domain. We define proximity as closeness
that focuses on distances to rather than from each actor. In other words,
what matters now is how close all the actors are to n;. Since the relation
is directional, such closeness will no doubt differ from the closeness that
n; is to the other actors. As stressed in Chapter 4, with digraphs, distance
to a node can be quite different from distance from.

We consider the average distance these actors are to n;. This average
distance, > d(nj,m)/L; where the sum is taken over all actors j in the
influence domain of actor i, is a crude measure of proximity. Note that
it ignores actors who cannot reach n;, so that unlike our closeness and
information centrality measures, it is defined even if the network is not
connected (when some actors are not reachable from other actors). This
index depends on the size of the group, and is difficult to compare across
networks. '

But, we can look at the ratio of the proportion of actors who can reach
i to the average distance these actors are from i. Thus, a better measure
of proximity takes the average distance, standardizes it, and then takes
reciprocals. From a suggestion by Lin (1976), we define
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Ii/(g—1)
Yod(nj,m)/1I;°

where the summation again is just over those actors in the influence
domain of n;. One can easily see that this index is a ratio of the fraction
of the actors in the set of actors who can reach an actor (I;/(g — 1)) to
the average distance that these actors are to the actor (3_ d(nj, n;)/I;). As
actors who can reach i become closer, on average, then the ratio becomes
larger.

This ratio index, based on the average distance actors in an influence
domain are to i, has the same properties as the centrality index for actor
closeness (see equation (5.7)). The index weights prestige according to
closeness or proximity. Note that if all actors are adjacent to n;, then
all the d(nj,n;) = 1, I; = g — 1, and the average standardized distance
is simply 1/(g — 1). This gives Pp(n;) = 1, the maximum value of the
prestige actor proximity index. If an actor is unreachable, then I; = 0,
and Pp(n;) = 0. Thus, the limits of this index are 0 and 1, and the
magnitude of the index reflects how proximate an actor is from the set of
actors as a whole. Similar indices were proposed by Mackenzie (1966a)
and Arney (1973).

One could easily take the variance of the {Pp(n;)} to obtain a group-
level prestige index based on proximity. In addition, the average of
the actor-level indices can be used to summarize the set of actors as a
whole. The average is proportional to the average of the reciprocals of
the average distances to the actors. These two group-level indices are

Pp(n;) = (5.25)

Pr=Y Pr(n) (5.26)
-1 &
and
g N_P.\2
SZ = Z Qﬂ%_&’)__ (5.27)
i=1

The average will be between 0 and 1. It equals 1 in a complete directed
graph, and 0 in an empty directed graph. The variance will be positive,
and measures how much heterogeneity is present in the set of actors,
with respect to proximity.

Another index based on proximity was proposed by Harary (1959c),
who considered not only the prestige of each actor (which he referred
to as status, defined as the total distance of actor i to all other actors)
but also the contrastatus of an actor (defined as the total distance to
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n; of all other actors, not just those in the influence domain). In our
terminology, these quantities are }:j d(n;,n;) (on which the closeness
indices for centrality are based) and the sum ) jd(nj, n;) (which, as just
mentioned, is key to the proximity indices for prestige). Using these terms,
status (for Harary) is synonymous with actor-level closeness centrality,
while contrastatus is similar to actor-level proximity prestige. Harary
defines the net status of an actor as the difference between these two
sums. The idea of constructing an index for prestige that is a difference
of two simpler indices was first suggested by Zeleny (1940a, 1940b, 1941,
1960). Zeleny’s sociation index is the difference of the average of the
overall “intensity” of ties in the group (measured by the density of ties
in the sociomatrix if the relation is dichotomous) and the number of
choices made by actor i. Refinements of this idea generate both a social
status index and a social adjustment index, measured at the level of the
individual actor.

These actor and group-level prestige indices based on proximity or
graph distances to each actor can be useful. Actors are judged to be
prestigious based on how close or proximate the other actors in the set
of actors are to them. However, one should simultaneously consider the
prestige of the actors that are proximate to the actor under study. If
many prestigious actors “choose” an actor, the actor should be judged
more prestigious than an actor who is “chosen” only by peripheral actors.
Thus, one should “weight” the distances used in the proximity indices
by measures of the prestige of the actors in the influence domain. Seeley
(1949) was the first to realize this; using children and friendship as the
network actors and relation under study, he states:

How should we represent each ... child’s popularity, as shown by the
choices, weighting those choices according to the “popularity” of the
source-of-choice child? (page 234)

To answer this question, we turn to yet another class of prestige indices.

Q®Status or Rank Prestige. Let us now consider a method to
measure the prestige of the actors in a set of actors based on their status
or rank within the set of actors. We have described several prestige
measures that look at indegrees and distance, but none of these reflects
the prominence of the individual actors who are doing the “choosing.”
We need to combine the numbers of direct “choices” or distances to a
specific actor, with the status or rank of the actors involved. If one’s
influence domain is full of prestigious actors, one’s prestige should also
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be high. If, however, an actor’s domain contains only peripheral, o
marginally important, actors, then the rank of this actor should be low.

To quantify this idea requires some sophisticated mathematics. Ar
actor’s rank depends on the ranks of those who do the choosing; bu
note that the ranks of those who are choosing depend on the ranks o
the actors who choose them, and so on. As Seeley (1949) goes on tc
state:

... both “source” and “target” children are the same children, [so] we
seem to be, and indeed we are, involved in an “infinite regress”: [i’s
status] is a function of the [status] of those who choose him; and thei
[status] is a function of those who choose them, and so ad infinitum
(pages 234-235)

Seeley (1949) was the first to propose a solution to this problem. His idea
and solution was also discussed by Katz (1953), Hubbell (1965), Taylor
(1969), Bonacich (1972a, 1972b, 1987), Coleman (1973), Burt (1982),
Mizruchi, Mariolis, Schwartz, and Mintz (1986), and Tam (1989). We
discuss this line of research here. We first want to note that researchers
usually refer to the property under study as “status” (or even “power”)
however, because of the use of this term in the relational analysis of
social networks using role algebras (see Part IV), we have chosen to use
the term “rank” as a synonym for “status.” Thus, actors will be said tc
be prestigious with respect to their rank within the set of actors if they
have large values on the measures described below.

The simplest way to present the solution to this “infinite regress”
situation is first to define Pr(n;) as the actor-level rank prestige measure
for actor i within the set of actors. The theory behind prestige as rank
states that an actor’s rank is a function of the ranks of the actors who
choose the actor. Thus, if we take the ith column of the sociomatrix,
which contains entries indicating which actors choose n;, we can multiply
these entries by the ranks of the other actors in the set of actors to obtain
a linear combination measuring the rank of n;:

Pr(n;) = x1;Pr(ny) + x2iPr(n2) + - - + X4 Pr(ny). (5.28)

For example, if n, is chosen by ns and n7, so that x5, = x75 = 1 and all
the other g — 2 entries in the second row of the sociomatrix are 0, then
the rank index for this actor is defined as Pg(ny) = Pgr(ns) + Pr(n7). In
this example, if actors ns and n; are of high rank, so will be n,. An actor’s
rank increases if the actor receives choices from high-ranking actors.
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Thus, mathematically, we have g equations (5.28), all of which depend
on all the indices themselves, the { Pr(n;)}. So, we have a system of g linear
equations with g unknowns. If we take the entire sociomatrix, X, and
put the set of rank indices into a vector p = (Pr(m1), Pr(m),..., Pr(ng)Y,
we can easily write this system of equations as

p=Xp. (5.29)

Or, rearranging terms, we obtain (I — X')p = 0, where I is the identity
matrix of dimension g, and p and 0 are vectors of length g.

This equation is identical to a characteristic equation (used to find the
eigensystem of a matrix), in which p is an eigenvector of X' corresponding
to an eigenvalue of 1. One solution to this system is to force X' to have
such an eigenvalue. Thus, to solve this equation, one must put some
constraints on either X', or on the indices themselves; otherwise, as first
noted by Katz (1953), equation (5.29) has no finite solution. In fact,
many authors, as we will note shortly, have worked on this problem, and
all their solutions can be categorized based on the exact constraints that
they place on the sociomatrix or on the system (5.29) itself.

Katz (1953) recommends that one first standardize the sociomatrix to
have column sums of unity. The effect of this standardization on the
system (5.29) is that the system becomes a familiar matrix characteris-
tic equation, with a well-known solution. We also recommend Katz’s
normalization. Specifically, one finds the eigenvector associated with the
largest eigenvalue of the standardized X'. The first eigenvalue of the
standardized X’ will be unity (due to the constraint that the socioma-
trix have unity column sums), and the eigenvector associated with this
eigenvalue will be the vector of rank indices, p.

As mentioned, the largest eigenvalue will be unity (if not, one has
made a computation error). Call this eigenvector associated with this
eigenvalue p,. Then, the elements of this vector are the actor rank
prestige indices: -

P = (PR(nl)a PR(n:Z)" . "PR(ng)),-

Large rank prestige indices imply that an actor is chosen either by a few
other actors who have large rank prestige, or by many others with low
to moderate rank prestige. Remember that an actor’s rank is a weighted
sum of the ranks of those who choose the actor.

There are refinements of this normalization which we now discuss;
however, we should note that such refinements are unnecessarily compli-
cated. Katz's simple standardization discussed above, and the extracted
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eigenvector, are easy to interpret; more intricate refinements give no
additional explanatory information. Katz (1953) also proposed that one
introduce an “attenuation parameter” a to adjust for the lower “ef-
fectiveness” of longer paths in a network. He begins with the matrix
aX +a*X?+...+d*X* +.. ., which is like an “attenuated number of paths
between any two nodes” matrix. The system (5.29) is then modified by
considering the column sums of this matrix (as we discuss below); unfor-
tunately, the parameter a is unknown, and must be estimated (actually
guessed) for a given sociomatrix.

To solve Katz’s modification of the system, we must find a vector p
that solves the new system of equations (which arises from the matrix
sum mentioned above)

{[(1/a)l = Xp} =x, (5.30)

where x is the vector of indegrees of the unstandardized X. The difference
between this modification and the original system (5.29) is the presence
of the parameter a, and the fact that the system now is equated to
the indegrees, rather than the zero vector. Katz recommends that the
reciprocal of the attenuation parameter should be between the largest
eigenvalue of the unstandardized X, and twice this largest eigenvalue.
That is, if we define A; as this largest eigenvalue, then A; < (1/a) < 24;.
It clearly is advantageous from a computing standpoint to choose (1/a)
to be equal to an integer. Given such an a and X, a vector of rank indices
can easily be computed; one need only solve the equations of the system
(5.30). We refer the reader to Katz (1953) for details and an example.

Taylor (1969) reviews Katz (1953) and Harary (1959c), and concludes
that one not only needs to standardize the sociomatrix to have column
sums of unity, but also to have row sums of unity, thereby adjusting
not only for status but also for contrastatus, as does Harary. Taylor’s
combined measure is derived from an eigenvector of a matrix that has
both adjustments (but not the eigenvectors associated with the eigen-
values of unity, which these matrices are forced to have because of the
standardizations). Since this index considers both distance to and dis-
tance from an actor, as well as the rank of an actor, it can be viewed as
a combination of rank, closeness, and proximity. It should be clear that
there is a variety of ways to modify systems such as (5.29).

Hubbell (1965) and Bonacich (1972a, 1972b, 1987) proposed methods
for identifying cohesive subgroups of actors (see Chapter 7), and by so
doing, generalized Seeley’s (1949) prestige measure further. Specifically,
Hubbell, in searching for an “input-output” model for “clique” detection,
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derives a “status score” for each actor by taking Seeley’s (1949) basic
equation (5.28) and adding a constant for each actor. This constant is
labeled the “exogenous contribution” of each actor to its own prestige.
This assumption yields a matrix equation, which, with suitable constraints
on the entries of the sociomatrix (such as unity column sums), can be
solved for the vector of indices. Bonacich (1972b) suggests that the
prestige vector be normed by multiplying it by a single parameter (with
the best choice being the largest eigenvalue). With this normalization,
the vector of indices is exactly the eigenvector associated with this largest
eigenvalue.

Bonacich (1987), based on his earlier research, proposed a two-
parameter family of prestige measures. In addition to the attenuation
parameter of Katz (1953), which Bonacich calls a dependence parameter
and denotes by f8, a scale parameter, d, is introduced into the system of
equations. The magnitude of B reflects the degree to which an actor’s
prestige is a function of the prestige of the actors to whom the actor
is connected. The relationship is monotonic, and the parameter can be
negative. Bonacich discusses bargaining situations in which prestige (or
power, as he refers to it) arises when connections are made to those
who are powerless. Bonacich gives an example of an exchange network
from Cook, Emerson, Gilmore, and Yamagishi (1983) that has negative
dependence. The choice of & depends on the value chosen for the depen-
dence parameter . Katz’s (1953) single parameter prestige indices take
« = 1. Mathematical details, and examples of the use of this family can
be found in Bonacich (1987).

Mizruchi, Mariolis, Schwartz, and Mintz (1986) (see also Mizruchi and
Bunting 1981) focus attention on Bonacich’s (1972a, 1972b) measure of
prestige, and show how his index can be dichotomized as follows: one
part due to the amount of prestige that an actor gets from another actor
(“derived” prestige), and one due to the prestige that comes back to
the original actor after being initially sent to the other actor (“reflected”
prestige). This partition of prestige into derived and reflected parts
was first suggested by the work of Mintz and Schwartz (1981a, 1981b).
The goal of this research is to identify hubs, those actors adjacent to
many peripheral actors, and bridges, those adjacent to few central or
prestigious actors. We regret this usage of the term “bridge,” which 1s
usually synonymous with a graph theoretic line-cut (see Chapter 4). Hubs
have large reflected prestige indices, while bridges have large derived
prestige indices. This partition of prestige into derived and reflected
parts was first suggested by the work of Mintz and Schwartz (1981a,
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1981b). We refer the reader to Mizruchi, Mariolis, Schwartz, and Mintz
(1986) for substantive interpretations of hubs and bridges. And, we
refer the reader to Tam (1989) for a detailed mathematical study of the
relationship between this approach and the more standard actor-level
prestige indices.

To our knowledge, the only network computing package that calculates
these prestige indices based on rank is GRADAP (Sprenger and Stokman
1989). However, the indices themselves are basically the elements of
an eigenvector of a matrix based on X. Such eigenvectors are not
difficult to find, given the available statistical computing packages. We
discuss this calculation in more detail in our example. Most of the more
complicated indices are elements of eigenvectors of suitably standardized
sociomatrices. Thus, all can be calculated using numerical analysis
packages such as that provided by IMSL and writing short FORTRAN
computer programs. The /BM-compatible personal computer package
GAUSS (GAUSS 1988), which contains many basic matrix manipulation
features, can also do these calculations.

5.3.3 A Different Example

To best understand the use of these centrality and prestige indices, let us
look at the Countries Trade Network data, and illustrate the calculation
of the {Pp(n;)} and the {Pg(n;)} on these data. As mentioned, we will focus
on the directional basic manufactured goods trade relation. Remember
that the (i, j)th entry of the sociomatrix for this trade relation is unity if
country i exports basic manufacturing goods to country j. Thus, countries
are central if they export to others, and countries are prestigious if they
import from other countries. In other words, prestigious actors are those
with many imports (or those who import from many prestigious actors).

We first calculated actor degree and closeness centralities for the
twenty-four countries in this network data set. These indices are shown
in Table 5.2. The {Cp,(n;)} for the entire group are given in the first
column. Two countries, nj4 = Liberia, and ny = Syria, export no basic
manufactured goods to any of the other countries, so have zero row sums,
even though they do import from some of the other countries. Since both
these countries have zero outdegree, the directed graph representing this
relation is not strongly or unilaterally connected (it 1s, however, weakly
connected), and we cannot calculate closeness indices for the complete
group. Thus, we dropped these two countries, and recalculated degree
centralities, as well as closeness centralities for this reduced, but unilat-
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Table 5.2. Centrality indices for the countries trade network (*Actor and
centralization indices calculated by dropping nis = Liberia and ny =
Syria from the actor set.)

With g = 24 actors | With g = 22 actors
Cplm) Cp(m)’ Celm)

Algeria 0.174 0.190 0.553
Argentina 0.565 0.619 0.724
Brazil 0.913 0.905 0913
China 0.913 0.905 0913
Czechoslovakia 0913 0.905 0913
Ecuador 0.087 0.095 0.525
Egypt 0.391 0.429 0.636
Ethiopia 0.087 0.095 0.525
Finland 0.913 0.952 0.955
Honduras 0.043 0.048 0.512
Indonesia 0.609 0.667 0.750
Israel 0478 0.524 0.667
Japan 1.000 1.000 1.000
Liberia 0.000 e —

Madagascar 0.043 0.048 0.500
New Zealand 0.478 0.524 0.667
Pakistan 0.565 0.524 0.667
Spain 0.957 0.952 0.955
Switzerland 1.000 1.000 1.000
Syria 0.000 —_ —

Thailand 0.609 0.619 0.724
United Kingdom 0.957 0.952 0.955
United States 1.000 1.000 1.000
Yugoslavia 0.783 0.810 0.840

erally connected digraph. These indices are shown in Columns 3 and 4
of Table 5.2.

Focus your attention on the smaller set of countries, those that export
(have non-zero outdegrees). There are many “central” exporting coun-
tries. In order of decreasing degree centrality (using the smaller group),
we have Japan, Switzerland, and United States (all with C;, = 1.000),
Finland, Spain, United Kingdom (these three with an index of 0.952),
Brazil, China, Czechoslovakia (all tied at 0.905), Yugoslavia, Indonesia,
Thailand, Israel, New Zealand, Pakistan, and so forth. The smallest
exporters, and hence least central on this index, are Algeria, Ecuador,
Ethiopia, Honduras, and Madagascar. We have almost exactly the same
ordering at the top and at the bottom with closeness centrality as with
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degree centrality. The more developed countries appear to be the most
central actors. It is remarkable that these two sets of actor indices agree
so well.

The centralization indices for the group of 22 are C; = 0.333, and
Cc = 0.495, neither of which is particularly large, reflecting the uniform
spread of the indices from the United States, Japan, and Switzerland
at the top, to Madagascar at the bottom. The closeness centralities
are larger than the degree centralities, and have a smaller range. The
variance of the outdegrees is S3 = 71.64, rather large (note that the
outdegrees have a range of 0 to 23, with a mean of 13.1), so that the
variance of the normalized actor degree centralities is 0.135. The variance
of the normalized actor closeness centralities is only S2 = 0.0328, much
smaller than that for the degree indices, indicating more homogeneous
actor closeness centralities. This homogeneity is probably due to the
fact that the density of this relation is large (0.626) so that one can get
from any country to any other country in relatively few steps, giving
small distances from country to country on average. We also note that
most countries trade with the “biggest” countries, so that even if the
smaller countries do not trade with each other, their proximity to the big
countries implies that the smaller countries are never very far away from
each other (with respect to paths through the digraph).

We now turn to the calculation of the prestige indices. These indices
are shown in Table 5.3. Prestige for these countries and this relation
18 synonymous with high involvement in the importing of basic man-
ufactured goods from other countries. The first column contains the
degree prestige indices for all twenty-four countries, and the second, the
proximity prestige indices. Notice that even though Liberia and Syria do
not export in this group (and hence have outdegrees of zero) we are still
able to calculate the proximity prestige indices.

As can be seen from equation (5.24), the standardized degree prestige
indices are simply the relative indegrees, standardized by dividing by their
maximum possible value, g —1. Such quantities are standard output from
most network computer packages. The proximity prestige indices can be
calculated by first determining the {I;} values, the number of actors who
can reach actor i, and then dividing these values by g — 1. This ratio is
then divided by the average distances of all actors to actor i. Note that
these average distances use the columns of the sociomatrix, rather than
the rows (as the actor closeness indices do). In fact, if one transposes
the sociomatrix, the average distances to an actor become the average
distances involving the rows. Thus, the closeness centralities, which use
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Table 5.3. Prestige indices for the countries trade network

P)(n)) Pp(n) Pglm)

Algeria 0.565 0.661  0.222
Argentina 0435 0599  0.805
Brazil 0478 0.619 1.000
China 0.652 0710 0.711
Czechoslovakia ~ 0.565 0.661 03818
Ecuador 0.391 0.599  0.183
Egypt 0522 0.599 0.482
Ethiopia 0.435 0710 0.131
Finland 0.652 0.590 0.758
Honduras 0391 0.581 0.072
Indonesia 0.609 0.599  0.617
Israel 0.435 0.599  0.682
Japan 0739 0.767  0.680
Liberia 0.391 0.564  0.000
Madagascar 0261 0.532  0.106
New Zealand 0.609 0.684 0.461
Pakistan 0.609 0.684 0.525
Spain 0.739 0.767 0.673
Switzerland 0.652 0710 0.765
Syria 0.522 0.619 0.000
Thailand 0.652 0.710  0.589
United Kingdom 0695 0767  0.633
United States 0826 0799 0.644
Yugoslavia 0.652 0.710  0.680

the average distances from an actor to all other actors, calculated on the
transposed sociomatrix, are exactly the average distances needed for the
actor proximity prestige indices.

For the example, we note that all countries are reachable from all
countries except Liberia (ni4) and Syria (ny). Hence, the influence
domain for the countries is the reduced group, giving I; = 21. From
equation (5.25), note that this gives us a numerator of 21/23 for all
countries.

Examining Table 5.3 we see that the degree prestige indices cover
a relatively narrow range of values, from 0.261 (for Madagascar) to
0.826 (for United States). Many countries import from almost all the
other countries, and thus have large degree prestige indices: Spain,
Japan, United Kingdom, China, Finland, Switzerland, Thailand, and
Yugoslavia. The countries with the smallest degree prestige indices
(and hence, few imports) are Argentina, Ecuador, Ethiopia, Honduras,
Isracl, Madagascar, and Liberia. Note that the prestigious countries
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are similar to the most central, except Thailand and Yugoslavia are
prestigious, but not terribly central (import more but export less) and
Brazil and Czechoslovakia are central but not prestigious (export more
but import less). The least prestigious countries are also the least cen-
tral.

Column 2 of Table 5.3 gives the actor proximity prestige indices, which
have a much smaller range than those based on degree; in fact, the
variance of the degree prestige indices is 0.0177, and Just 0.0054 for the
proximity prestige indices. We have exactly the same countries at the
top and at the very bottom. Note, however, that the smallest proximity
indices are 0.532 (Madagascar), indicating that even Madagascar is not
terribly distant from the other countries. This is probably due to the large
density for this relation; most countries do import from the countries in
this group. We note that the average actor degree prestige index is 0.562,
while the average actor proximity prestige index is 0.660.

Lastly, we turn to the actor status or rank prestige index. We take the
sociomatrix, normalize it to have column sums of unity (by dividing by
the indegrees), transpose it, and calculate its eigenvalues. Note that this
sociomatrix is not symmetric; hence, the standard routines for extracting
eigenvalues and eigenvectors, which are designed for symmetric matrices
(such as covariance and correlation matrices), cannot be used. We used a
small FORTRAN program, which calls the IMSL routine E VCRG. This
subroutine extracts eigenvalues and eigenvectors from any real-valued
matrix. Such quantities can be complex-valued, so care must be taken in
interpreting the output.

As mentioned, the largest eigenvalue of the relevant matrix is unity. The
elements of the eigenvector associated with this eigenvalue are the rank-
prestige indices. For the countries’ basic manufactured goods relation,
the indices for the twenty-four countries are shown in Column 3 of
Table 5.3. These indices are quite different from the other prestige
indices. The ordering of the countries with respect to rank prestige is
Brazil, Czechoslovakia, Argentina, Switzerland, Finland, China, Israel,
Yugoslavia, and then Spain, United States, and United Kingdom. The
addition of Argentina and Israel to this “prestigious subset” is somewhat
surprising, since these two countries have small indegrees; but remember,
what is important here is not how many countries a country is adjacent
to, but the prestige of these countries. Specifically, prestigious countries
are those that import goods from nations who in turn import goods.
Clearly, Brazil, Czechoslovakia, and Argentina are linked directly to
other prestigious countries.
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5.4 Comparisons and Extensions

Several authors have compared the performance of the many centrality
and prestige indices discussed in this chapter, either on real or simulated
data, or both. Earlier researchers, such as Stogdill (1951), concentrated
on different measures of actor degrees, thus focusing attention on only
one centrality index. Most notable of recent comparative research are
studies by Freeman (1979), Freeman, Roeder, and Mulholland (1980),
Knoke and Burt (1983), Doreian (1986), Bolland (1988), Stephenson and
Zelen (1989), and Friedkin (1991). We now review these comparisons.
The first, extensive study of centrality indices was undertaken by
Freeman (1979). Freeman lists all thirty-four possible graphs with g = 5
nodes (itemized by Uhlenbeck and Ford 1962), and compares actor- and
group-level degree, closeness, and betweenness centrality measures across
the graphs. In brief, Freeman demonstrated that the betweenness indices
best “captured” the essence of the important actors in the graphs. As
we have mentioned throughout this chapter, closeness centrality indices
could not be computed for disconnected graphs, and the star graph
always attained the largest centralization score, while the circle graph
attained the smallest centralization. Other, less obvious findings include:

o The three measures of centrality under review differed noticeably
in their rankings of the thirty-four graphs.

o The range of variation in the actor centrality and group central-
ization scores is greatest for betweenness; that is, betweenness
centralities generate the largest actor variances.

e The range of variation in the actor centrality and group cen-
tralization scores is least for degree; that is, degree centralities
appear to generate the smallest actor variances.

Further, the more theoretical nature of the betweenness indices leads
Freeman to recommend their useage over the other two.

Freeman, Roeder, and Mulholland (1980) replicated the MIT exper-
iments, conducted by Bavelas (1950), Smith (1950), and Leavitt (1951),
designed to study the effects of the structure of a network on problem
solving, perception of leadership, and personal satisfaction (the three
variables measured for each actor). Freeman, Roeder, and Mulholland
sought to determine which of the three centrality indices (degree, close-
ness, and betweenness) was most relevant to the same tasks undertaken
by the same kinds of networks studied in the earlier experiments. Free-
man, Roeder, and Mulholland used four different graphs, all with g = 5,
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and found that betweenness indices best measured which actor in the set
of actors was viewed most frequently as a leader. Both the degree and be-
tweenness indices were important indicators of group performance (with
respect to efficiency of problem solving). However, the closeness index
(based on graph distance) was not even “vaguely related to experimental
results” (Freeman, Roeder, and Mulholland 1980).

Knoke and Burt (1983), as part of their classic paper distinguishing
between centrality and prestige, studied five centrality indices and five
prestige indices. These indices were calculated for the Galesburg, Illinois,
physician network studied by Coleman, Katz, and Menzel (1966) to
identify diffusion of a medical innovation. Within each set of five indices,
two were based on degree (see equation (5.3)), one on closeness (equation
(5.8)), and one on either betweenness (for centrality — equation (5.12))
or rank (for prestige — equation (5.28)). The five centrality actor-level
indices were calculated on a symmetrized version of the data (so that the
graph was nondirected) and the five prestige indices, for the actual data.
All these indices are output from the computer program STRUCTURE
(Burt 1989). For the Galesburg network, the correlations among the
centrality and among the prestige indices were high, as expected. In
addition, the centrality and prestige indices were also associated. This
strong association, which Knoke and Burt (1983) study further by using
additional actor attributes (such as the date that the medical innovation
was adopted) is described by these researchers as a unique feature of
the network under study. It is thus difficult to extend these findings to
general network data.

Doreian (1986) reviewed the work of Katz (1953), Harary (1959c),
and Hubbell (1965), and focused on measures of “relative standing” of
the actors in small networks. He criticized prestige indices based on
degree or rank as being arbitrary (which is certainly true of Katz’s and
Hubbell’s prestige indices, since there is not natural choice for scaling
or attenuation parameters). Doreian advocated the use of an “iterated
Hubbell” index, which converges to a standardized eigenvector of a
function of a matrix derived from the sociomatrix. The advantage of this
index is that it produces prestige measures that correspond well to the
regular equivalences of the actors in the network (see White and Reitz
1983; and Chapter 12).

Boliand (1988) studied four centrality measures: degree, closeness,
betweenness, and a new measure, “continuing flow,” which combines
degree and closeness. Bolland’s continuing flow index examines all paths
of (at most) a fixed length and counts how many of these paths originate
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with the ith actor. This count is then standardized, and the fixed length
allowed to get as large as possible. Unlike the closeness and betweenness
indices, this index considers all paths of any length, not just geodesics.

Bolland examined a network data set giving influence relationships
among forty people involved in educational policy-making in Chillicothe,
Ohio (see Bolland 1985). In addition to reporting extensive data analyses
of this network, he conducted a Monte Carlo analysis by adding random
and systematic variation to the network to obtain a number of “noisy”
networks. These simulated networks were similar, but not exactly equal
to, the original data. Each noisy network was replicated one hundred
times to study the validity, robustness, and sensitivity of each of the four
centrality indices.

Bolland’s findings supported the earlier work of Freeman (1979).
Specifically, degree-based measures of centrality are sensitive to small
changes in network structure. Betweenness-based measures of centrality
are useful and capable of capturing small changes in the network, but
are error-prone. Closeness measures are much too sensitive to network
change. Lastly, Bolland found the continuing flow index to be relatively
insensitive to systematic variation, and useful in most circumstances. He
recommends the use of both betweenness and continuing flow indices in
practice.

Stephenson and Zelen (1989) compared their information centrality
index to the other centrality indices using two data sets — the social
network of forty AIDS patients mentioned earlier and a Gelada ba-
boon colony of g = 12 animals, before and after the introduction of
two additional group members. These latter data, gathered by Dunbar
and Dunbar (1975), are analyzed longitudinally by Stephenson (1989).
Stephenson and Zelen conducted the only comparison of the degree,
closeness, and betweenness centrality measures, with the newer informa-
tion index. There are several differences between information centrality
indices and betweenness centrality indices. Specifically, information in-
dices are much more “continuous” than those based on betweenness,
which really are counts, rather than continuous-valued quantities. Thus,
information indices can be more sensitive to slight arc changes than
betweenness indices. Peripheral actors do not have much effect on the
computed values of betweenness indices, since these actors rarely lie on
geodesics; however, such actors can have significant effects in a network
(especially in networks modeling disease transmission). Information in-
dices are much more likely to measure the impact of these peripheral
actors. Degree centrality indices have a limited ability to distinguish




§:

218 Centrality and Prestige

among actors with differing centrality. The range of possible values for
a degree-based index is quite small, so that such indices are not very
sensitive.

Friedkin (1991) offers a different theoretical foundation for the com-
monly used centrality measures based on a social influence process. He
derives degree, closeness, and betweenness centrality measures by assum-
ing that the network effects model (which basically is an application
of an autoregressive model for spatially distributed actors or units) is
appropriate. This model has been proposed for use in network analysis
by Erbring and Young (1979), Doreian (1981), Burt (1987), and Friedkin
and Johnsen (1990). The three measures are

(1) Total effects centrality — the total relative effect of an actor on
the other actors in the network
(1) Immediate effects centrality — the rapidity with which an actor’s
total effects are realized
(ii) Mediative effects centrality — the extent to which particular
actors have a role in transmitting the total effects of other actors

Friedkin shows that these measures arise as “side effects” of the network
process model of social influence. As can be seen by their definitions,
they are congruent with the degree, closeness, and betweenness actor-
centrality indices discussed here. Friedkin’s work can be extended to
directional relations, including real-valued ties, due to the measurement
generality of the social process model. Such generalizations would yield
new, theoretical rationales for prestige measures.

To gain a better understanding about how important a specific actor is
to a network, one can take an actor with a large betweenness index, and
drop it from the network (allowing this actor to serve as a “cutpoint™).
Counting the number of components generated by this deletion will give
an indication of how much “betweenness” this actor exerts over the
network. Truly central actors will force many disconnected components
to arise. Stephenson (1989) does this for the AIDS network, and finds
that four of the actors in this network, which have large betweenness
indices, do not “break up” the network when deleted. Betweenness is
just one — of many — manifestations of the primary centrality concept.
One should not utilize any single centrality measure. Each has its virtues
and utility.

We should note that there is a variety of actor- and group-level degree-
based indices that can be calculated and examined when more than one
relation is measured. For example, one can study how likely it is that an
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actor chooses another actor on more than one relation. Such an index
uses the quantities x;;(m) = 1 if at least m of the ties x;j1, Xij2,- - -, XijR aI€
equal to 1. An actor-level multiplex index can be calculated by averaging
the quantities just over j. A group-level multiplex index can be calculated
from these quantities, simply by averaging them over all i and j. An
index based on network cohesion (for each relation) can be based on the
number of dyads that are mutual.

With multirelational data, we suggest that the indices described in
this chapter be calculated for each telation. We do not recommend (as
some authors have, such as Knoke and Burt 1983) that the relations
be aggregated into a single sociomatrix, unless there are strong substan-
tive reasons for such aggregations (such as two measures of friendship
combined into a single positive affect relation). Further multirelational
analyses, designed to measure how similar actors are across relations and
how associated the relations are, are discussed in Chapter 16.






